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.

GENERAL- coNlcALa!Low FIEm3

SUPERSONIC WING THEORY

IN

By Harvard Lomax and Max. A. Heaslet

Linearized, compressible-flowanalysis is applied to the study of
quasi-conical supersonic wing theory. Single-integral equations are
derived which relate either the leading to the slqe of a lifting
surface or the thiclmess of a s-trical wing to the pressure distri-
tion for trianguhr @n@ with subsonic leading edges. The forms of
these equations and tkir inversions em shplified through the intro-
duction of the finite pt and the generalized principal part of an
intagral .

Applications of the theory, in the lifting case, include previously
known results. Ih the nonlifting case, it is shown that for a specified
pressure distribution the theory dces not always predict a unique thick-
ness distiilnztion. This is demonstrated for a triangular plan form hav-
ing a constant pressure gradient in the stream dtiection.

INTRODUCTION.

If a sufficiently thin w5ng at a SJMU angle of attack is placed in
a uniformstream, its aerdynaMc properties can %e detemdned by mans
of the analysis associated with linearized compressible-flow theory.
If, moreover, a Cartesian coordinate system is used such that the wing
is situated on or in the inmdiate vicinity of the xy plane and the
stream flows parallel to and h the direction of the positive x axis,
it fo120ws that the basic equation for the perturbation potential
Q (x,y,z) can be written in the form

P+P*-’?W-PZZ=O (1)

where p2 = M24, ~ being the free-streamMach number.

The application of equation (1) to wing theory is essentially a
mathemgtical problem involving the solution of a differentid equation
with given boundary conditions. Consistent with tb assumptions of
linearized compressible flow theory, or small-perturbationtheory, the
boundary conditions expressing the prescrilwd physical conditions are

.—. . .—— - .- ——. —— -—



2 NACA TN 2497

given alway8 at z = O and, as a consequence, boundary conditions as
well as the solutions are superposable.

The techniques used in the solution of wing problem sre, for the
most part, adaptations of existing mathematical mthais to the specific
type of boundary values and their supporting surfaces that occur ti
aer~cs. h particular, it is often possible ~ t~orY to * a
reduction in the number of indepentint variables by virtue of lamwn
&) OIIBtiiC m p~SiCd conditions. The conical-flow-field analysis of
Busemann (reference1 ) provides b this way a mmns of descending from
a three- to a two-dimnsional potential equation.

A conical flow field Is one ~ which the perturbatim velocity com-
ponents and the induced pressures me constant in.JJMgnitudealong anY
ray from the apex of the field. In this case, the perturbation pote-
tial may be written in the form

where cp is a hao~neous function of degree one in the three variables.
An obvious generalization of this concept leads to the cmsideration of
homo~neous potential. fields of higher degree or, as they are somatims
called, quasi+ onical fields. ~ q is hamgeneous of degree R + 1,
it follows that

Equation (2) yields conical velocity fields, the degree of homogeneity
being zero, while for equation (3) the quasi-conical-velmity fields are
homogeneous and of degree k. A@icatlons M these quasi-conical
fields to pitching and rolling triangular wings have leen given by
Brown and Adams (reference2), while Ribner (reference 3 ) has us6d sim-
ilar ~th@s in the consideration of cancel.lation elemmts. Further
enmples may be found in the literature.

If new veriables ere intr~uced in equation (1) such that

PY =7, $2
~ = L WX,Y, Z) = CXK+l fqn,cjx (k)

where c is an arbitrary constant, the transfmd ~tial differential
equation iS

.

.

.

——
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‘I%uE,for a quasi-conical flow field with apex at the origin of the
coordinate system, the resultant differential equation is elliptic for
all values of q,t satisfying the inequality

T2C2- (1--f ) (L&) <0

that is, for all points inside the foremost Mach cone

The analysis of particular problems is therefore intimtely associated
with the study of two-dtinsional, elliptic-type equations and is espe-
cially suited to the use of complex-variabletheory. This is the
approach taken by many investigators. In references 4 and 5, Lagerstrom
and Gemmin have developed these ~thcds in considerable detail.

A different apprcach to the
study of lifting surfaces in conical
flow fields has been given by Brown
(reference 6) and in reference 7. IM.

In this apprmch a basic lifting ele-
mmt carrying a uniform lad distri-
bution and extending radially from

Y
/

the apex of the field (see slmtch) is /

considered first. The induced veloc– /’
ity field is calculated for such an ,/
elem3nt lying in the plane of the /
wing and inclined to the stream /
direction at an arbitrary angle 5. \
The solution of a particular problem \

then proceeds along one of two lines.
\.

Ix \
If the lmding is given, the strength
of each elemmt is fixed and the cal-
culation of the lifting+mrface gemmtry depends only upon carrying out
the integration. This is referred to as a direct problem On the other
hand, if the geomtry of the wing is given, the loading is unhewn and
the strength of the elemnts must be adjusted so that the resultant ver-
tical induced velocities are consistent with the given wing slope every-
where on the plan form. The solution of such a problem depends upon the
inversion of a relatively simple singular integral equation and is
referred to as an inverse problem.

As was pointed out in reference 8, similar methcxisapply to non-
lifting problems in conical flow fields and pressure distributions cor-
respending to conical elemmts of thickness can be calculated. In such
caseS, however, the direct proble”m,that is, the one involving the e~-
uation of an integral, is the one in which the slope of the wing surface
is given; and the inverse problem, that is, the one involving the SOIU-

tion of an integral equation is the one in which the sha~ of the pres-
sure distribution is prescribed.

0

...— ..— .- .
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#

‘l& present paper is concerned with the generalization of the
basic elemmte of references ‘7and 8 and their application to lifting
and nonlifting problems in quasi+ onical fields”of flow for cases

.

involving subsonic-typeleading ed~s. only solutions to the inverse
problems will he considered and at all tires these will be oltained by
inverting the integial equation.

The orders of singularitiesthat arise in the analysis sre such
that it is convenient to use the concepts of the finite part and gener-
alized principal part of improper integrals. These ~neralizations will
prove to 39 of importance for their notational efficiency and permit a
s~lif ied treatment of the derivatives of singular integrals. &damard
(reference 9) has potited out clearly the necessery steps In the trea%
mnt of such improper integrals,%ut did not stress the role of the dif-
ferential operation in obtaining his integrals. Since som differences
exist between Hacbmard~s definition of the finite part and.the one used
here, when extensicms to multiple inte~als appear, a different notation,
consistent with reference 10 has been adoplad. The gmeralization of
the principal part has also been discussed in reference 3.

a.

c(e)

Ill

%

m=

M.

Q

LIST

speed of sound in

lead distribution

slope of

slope of

slope of

oFIMPoRTAm ErtMBoLs

free stream

on lifting surface as a function of e

radial elemmt relative to free-stream direction

right leading edge relative to free+tmam direction

left leading edge relative to free+ tream direction

fre~tream Mach number

local static pressure

free-stream static pressure

angular rate of roll in radians per second

free+tream dynamic pressure
@’@

.
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u

w

x,y,z

a

$

6

Ap/q

K

c,?
e,eo,el

1.

IJ

P.

T

Cp(x,y,z)

sl(q,~)

free-stream velocity

streamwise perturbation velocity

perturbation velocity norml to plane of wing

Cartesian coordinates intrmluced in equation (1)

wing angle of attack

angle between free+tream direction and line through wing
vertex

angle between right leading edge and stream direction

angle between left leading edge and stream direction

discontinuity in u in plme’ of wing (~ - U3)

discontinuity in w in plane of wing (wu – WZ)

(P2 - Pu)
load cwfficient

q

constant determining degree of homogeneity of quasi+ onical
velcmity field
(See equation (3). ) ,

conical v~iables intrduced in equation (4)
(~’ 3

J@, w~, mlp

slope of wing surface relative to free-st~am direction

Mach angle (arc cot j3)

free+tream density

region of integration in equations (10) and (27)

perturbation velocity potential introduced in equation (1)

function related in equation (4) to perturbation velocity
potentisl of a quasi+ onical flow field

— . . ..——_ ~ ---- .. .. . . -.



6

Subscripts

.

u denotis conditions cm upper surface

1 denotes conditions on lower surface

ANKLYSIS

This investigation is confined to a
lems; that is, problems that require the

NACA TN 2497

4

of

of wing

consideration of inverse prob- ‘
inversion of an integral equa–

tion. As has been potnted out, these problems correspond to the two

&

Y
/

/

,/

/

/

/

/

\

\

‘f x \

following cases: either the load
distribution over a given lifting
surface is to be determined or the
thiclmess dlstribution correspending
to a prescrikd pressure distribu-
tion is to be calculated. The given
conditions must, of course, be such
that a quasi-conical flow remilts.
First,,therefore, the plan form will

,

k chosen, as shown in the accom-
panytig sketch, so as to have an
apex at the origin of coordinates
and to %e of semi-infiniteextent.
The traces of the foremost Mach cone
me inclined to the positive x axis
at the Mach angle *LL=*arc cot ~

and, since only subsonic leading edges are leing considered, the leadtig
edges of the plan fmm are iwmd at angles snmller in ma~itude
tham p. Denoting these angles by 50 and 81 and m3asuring them from
the x axis positively in the conventional counterclockwisedirection,
it follows that the eqyations of the leading e~s are

Y =xtanbo=m& and y=xt.anbl=mlx (6)

In the sktch b. is positive while 51

5 tmu?laaryconditions for the two
as follows, where subscripts u and Z
atz= O+snaz = C&, respectively:

is negative.

types of problems may be stated
are used to denote conditions

LiftinR case: Over all the xy plane AW=WU– WZ=O and,
except for the region occupied by the plan form, Au = ~ – U2 = O.
On the plan form, vertical induced velocity is specified in either
of the forms

.—— ——. —— .—



2
.

.

NACA TN 2497

where 71 Or 72 al’9 ti~ pol~tis h X/y,

NJmliftillgcase: Overall. the ~plane Lu=u-uz=O
and, except for the region occupied by the plan form,

u

Aw= w~ -W2 =0. On the plan form, the stieamwise tiduced veloc–
ity is specified in either of the forms

where VI or Va are lmown polynomials in x/y.

The solution to the two problems wXU be attained after con-
sidering first a lifting elemnt and a thickness elemnt and then,
for each of these problems, the basic integral equation is deter-
mined by suming the appropriate elemnts. These derivations are
given in the foil.owing sections.
local load In c~fficient form Is
Sions

4 P2-PU.=—

b -+erturba.tion theory the
related t~ u by the expre=

=—=
V.

and the slope in the streamwise direction
z = z (x, y) is related to vertical tiduced
Sions

8ZU Wu
hu=—=—ax V.

of an ~bitrmy
velocity by the

(7)

surface
expres—

(8)

Lifting Case

UpWash field of lifting elemmt.- Consider a radial ele~nt emanat-
ing fbom the origin ad assure that the lead carried by the elewnt is

_—. ——. —



.

8

(

I Me

/
/

/
/

/
/

/

#x

where C Is a constant

NACA TN 2497

.

(9) -

for a fixed
position of the elermnt. If the
ele?mnt is inclined to the x axis
at an angle b, its upwash field can “
be calculated by subtracting the
induced fields of two triangula
plan forms with vertex angles equal
to b + N and b, each triangle
having one side fhd for conven-
ience along the x axis (see sketch).
Assum3, first, that b is positive.
As shown in reference 10, the upwash
field of the triangle can be calcu-
lated f%om the lnmwn lead distribu-
tion by mgans of tk fundammtal
formula

where the region T is the area on the plan form that lies ahead of
the traces of the lkch forecone from the point (x,y,O). The bars on the
integral si~ indicate that the generalized principal part of the inte-
gral is to be evaluated (see appendix). By definition, if

.

J
is a lmown indefinite
fOllows

F(y,yl)dyl
= G(y,yl) + constit

(Y1-Y)2
(I-1a)

integral, the definite integral Is evaluated as

In case the stigukrity In the

G(y,b) - G(y,a), a,b ~ y (llb)

titegrand lies outside the region-of
integration, the deftiition yields, of course, the.convent5.onaldefinite
int%grsl.

.
In,so?m cases in the following analysis the principal-part

sign will be used to express relations valid for singularitiesboth
inside and outside the range of integration. .
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The integration with respect to xl in equation (10) is oarried.
out over the area bounded by the lines

yl = o, xl = yl’cot 5 = mh (x-xl) = W(Y-Y1)

and, with the sulmtitutions,

19= @l, q= PYIX, VI = $Yllx

leads to the results

(12)

.

If 19 and m are negative, the limits in equations (lsa) and (lsb) are
reversed so that as the limitm are now written changes in sign are
required in the equations.

b arder to obtain the upwash field of the required lifting elemnt,
It is sufficient to perform‘a dtmct differentiation fW, if Wu of a
plan farm with vertex angle b is of the form

.

“

it fciuows that
may be denoted

‘u = f (e,?)

when O< e, the value of upwash tiduced
dw.u and iS

dwu =
af

f(e+a,q) – f(e,q) = ~ de

and when e<O

If this process
transformation

,

by the elemjnt

is oarried out in equations (13a) add (lsb ) and if the

...-. .—.-.—— -—.. —-- —-. — -—-——————— —--———.—
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“

is introduced, the expressions for dwu becom

(JE ~=ati J3cde@ T
f

(q-t )’+= at

O-F %/F
–l<~<e<l (lJ%)

x
–1 (e-q) (e–t )K+=t

Equations (lb ) and (lfth) provide the upwash fields for any radial ele-
m3nt, regardless of the sign of (3. btegration
alternative fcams

d~=_ pc de(tc+l) e~

J

7 (~–t )K~ (it
V. 4X -1 (e-t )K+2 t ‘

in one of the tntegrals the singularity in

by perts leads to the

– l<~<e<l

-l<e<~<l on) .

t requires the use of
a Cauchy principl pert.

Derivation and tiversion of integral equation.– If now the lifting
elements cover the region between el W e. md C Is a function
of (3 determining the lift carried along the radial ele~nt at that
point, qmash pro&ced by
tion

e.
/’ eK c(e) de

the resultant plan form is given by the rela–

H’
q-c

f

q (q-t)K ~ dt +eR c(e) de
el 1 , (e-t )K+2 t

Jq(q–t )K&3 at

-I (e-t )’+2 t 1

This result can k written as

“’$%=() f-fu# ‘0
V.

eK c(e) H(e,~) df3
el

(16a )

(16b )

.
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where

—

u

The function H(e,~) has a simple pole at e = ~, and the integral
expression for Wu in equation (16b) is therefore evaluated as a Cauchy
principal part.

The bound.ar condition tobe satisfied by equations (l&) ~a-(16b)
i?la that p wJx To is a p,olyncnnialof degree K in the variable q.

It follows that the (K+l) derivative of the right4and member of equa–
tion (163) mst vanish.

where use is nvade of the generalized principal part of an integral
defined as (see appendix)

b n

f

A(xl) dxl 1

( )J

b
A(x1) til

a (xl-X)n+l = ~ ~ a
xl-x

‘+- (Y l’A(x’)2nlx-x’@
Here again the definition applies regardless Oflthe value of x but is
of particular significance when x lies within the region of integra-
tion.

Continuing the calculation in equation (17), one has, after taking
the derivatives with respect to q,

I
.

. — . . . . . —.— .—. -—— —.— — —
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which My k written in the form

The function C(e) is thus to be found
integral equation o

o-q

through the inversion of the

‘o eK c(e) deJel efi

The inversion of the integral equation

b
f(x) =

f

g(g) d~

a X-E ‘

K

T’ ai qi (18)

iso

a<x<b

is hewn to be

[!

b f(~)J’j
g(x) =

&*-a x+

where A is an arbltrerv constant to be determined from

d~
1

(19) -

.
physical con-

Siderations. -, the solution to equation (18) for el< e< e. is

eK c(e) ~ 1

J(f30-) (e-l)

and this leads to the expression

.

where the cmfficienjm bi are
tions of 9.

U+l
T—— biei

~~oJ(eo4) (Ml)=

functions of e. and el but

dq 1

(20)

not func-
.

Relation of general solution to wing ~ om3try.— Worn eqmtlon (9)
tb bdtig on the PM form is, stice e = pY/x,

—
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.

.

.

(a)

where the cmfficiente bi must be determined frum known -ormtion
about the surf ace geam try. .

Consider next the identity

a<O<b

= o,

(22)

where i is zero or a positive integer. This expression *lies the
equality

.41 (lpt)’~ ~t .0

lc+2

since the latter form
tions, into integrals
ity

fi ((+t)-- t

can k broken, by expansion into
1* the left nmber of eqmtion

ratimal frac-
(22). The equal-

follows where the primipalqart sign isneeded on but one side of the
relative to ~. mom this
relations are obmined:

(q-t )RA/G=
dt, q<O (23a)

t(e-t)K+2

(q-t)K= ~t ~>. (23b )
t (e-t )*2 ‘

.
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.

The range of q in these two equa-
tions has been restricted, respec-
tively, to negative and positive

.

values in mxler to avoid mathema-
ticaldifficulties arising when sin-

fiit~~ o~ur sti~ously at
o. ~ shaded pm

tion of the ac~ompanying sketch is
the region of integration in equa-
tion (23a). In the sketch, the
inequalities -l~el<o, o<eo~l
have been aesumd. This implies
that ths plan form has two subsonic-
type leading edges and such a con-
dition will k assured to apply
hencefmth.

It is particularly convenient
to invert the order of integration
h equationa ‘(23a)and (23b).

the forms

substituting from eqyation (20), and inverting the order of integration,
leads one to the forms

f

e.

el

tc+l

I bi’ei de

1=0

(e-t-CL) J(eo-e ) (e-e,)
* q<o

.——— .—.
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.

.

.

tt+l I

‘s ?).19id8

f-

60 +_lo ‘
q>o

(31 (H-u)J(eo-@(&el) ‘

Use of the algebraic identity

.
m

em L (t-i-a)”fJ-3 (*)*= + —
(e-t+) = (e-t+)

permits the

j= 1

expression of wu in the alternative forms

R+l
Mm

()

~b
a+ o 4yr~: z

tt:l i

1-
F..l

L bi (t+u)i de

J’

61- (@)K ~dt ‘0 i=o

-1 t J e= (e-ti) J(60-e)(e-e=)

.

.

L bi (t-m)i de 1
i=o

(e–%) /(eo-e ) (e-el)

1

+

.—— ——— ——— —.—. .—z -..-. —.—.
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.

1 J1 t Je= J(e~) (e+3=)

tz~l

f .,.
1

t de= (e–t-a) J(eo-e)(e-el)

K+l

I b~ (t+a)i de

F’o i=o

Jeo4 t ‘el (e-a) J(eo-e )( f+el)

+

1
The double integrals occurring first in the right4and nmitmrs of these
equtims are of defpee K h a and their derivatives consequently
vauish. Moreoever, from th6 identities .

b

J de

a (e-x) J(b-e)(e+3)

it follows that the last terms
expressions for Wu becme

K

()
tc+l

Wu ()gvo_lti--Jil
x a+o 4R: z

b —m
, b<x

(x%) (x+ )

o , a<x<b

h (bx)~a-x) ‘ ‘<a

(24)

●

h the right mdxws vanish and that the

tc+l

f

‘1+ (l-)-t)’&3 L bi(ti-a)i
t dt, ~<0

—1 i.o ~(eo–ti) (6pti)

-— —
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If,

J

b

a

the

tc+l

I bi(t+ct)i
at, ~>o

i,.o J(t-c))(wl)

as in the appendix, the finite part of an integral is

A(xl)til

(Xr-b)i+’” =

Zi ~b (?J !_=

1.3... (21)1) a

~i b

m
a A(xl)dxl

1.3... (21)1) z a (XLA)”=

expressions for Wu my be written in the form

.

dt, q <O (2>)

Ic+l

Ti I.&

Equations (2%) and (2~ ) are the fundammtal equations far a
lifting surfaceand, since WUBO baa been assured lmown as a polyn~
dalin~= $Y/x, it re~tis ~rely to dete* the unlmown c~ffi–
cients bi by equating cmfficients of q on both sides of the
expressions. in the form given, it appears that far K>0 the numlmr
of equations obtainable exceeds the number of undetermined coefficients. .
No general thearems of determinancy have as yet been established as to
the uniqueness of the solutions, but applications to be made later will
indicate tbs techniques involved in calculating specific emmpbs. In
the laterally symmtricel case, where 41=9., solutions are easier to
determine and the fundamental equations are

—-. —.— ——.——.— —...— __. ——. -————-—
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tc+l

(26a)

(26b)

Nonlifiing Case

A radial elenmnt emnating frm the origin is to be construcbd
such that it has a quasi< mical thiclme$8 distribution’-

where C is a constan~ and ~ is the streamwise slope of the elemmt

as defined in equations (8). The derivatim of the induced pressure
field associalml with the elemmt follows closely the analysis ih the
lifting case. Thus, a triangular plan form is first considered where
one side is parallel to the stream direction and with a vertex angle b.
IYom reference 10,

%=

pressure ccefficient can be written in the f*

(27)

where the region T is the area on the plan form that lies ahead of the
traces of the forecone from the point (x, y, O) and the integration
with res~ct to xl involves the finite part. .

In the notation of equations (13), the analogues to equations—
(1%) and (ln ) are

J –l<q<e<l (28a)

> –l<e<q<l (28b) ‘

.——
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If C is a function of 13 and the thickness
%etween 191 and O
the expression

o, pressure coefficient on

1-

19

elemmts cover the region
the plan fom is

1-

1

gi~en by

+

(29)

The boundary conditions require ~KC /xK to W a polynomial of
degree K in ~. $If the (K+l)st deriva ive of equation (29) is set
equal to zero, the relation

holds, and after further different iation reduces to

T
it-l-l

o= o eKc(e)ae () ‘o eKc(e)ae

el (e~)w2 ‘: J(K+;)!g= (efi)

The function C(e) satisfies the sam integral equation that arose in
the lifting case. (*e eqwtion (I-8).) l%e solution can threfcme tm
written, as in equation (21), in the form

The equivalence

(30)

-—. ________ —.—__ ._ _ _____ —— —.-. –——— —-—–——-—–—
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permits the rewriting of equation (29) in the forms

(31a)

K
&

()
e. v~ ~p . 4:;1)

f
c(e) eKae J t(q–t )Fdt

, q<o (Sib)
x el -1 (e–t)K+2=

Substituticm for #C(e) from equation
integration, and use of equations (24)
tians

f

(30), inversion of the order of
leads to the fundmmntal rela-

K&..

1 alti

()
$R

()
2 Pe= t(ll-t)’ ~ ‘+l i=o

CP ‘ – ~$_l d=Y % J (eo-t)(e=–t)
dt, q <O (32a)

{

!
K

L

()
tc+l

g Cp=+
.f ()‘O t(q-t)~ a i~o

dt, q>O (32b)
x . m~1 J(Mo)(til)

When el = +., these equations becom

tc+l

dt (334)

(33b)

The determinantion of the thiclmess distribution corre spending to a
given pressure distribution can thus be obtained from the above equa-
tions by equating coefficients of ~ and solving for the unlmown
cmfficients ai. Specific emmples will serve to tie the steps
clearer; such problems wXU be cons id.ered in the following section.

.

.

.

.

— _——
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APPLICATIONS

.

.

“

.

Since homogeneous fields of low degree have already received con-
siderable attention, several results have been published previously. In
the case of thickness problems corresponding to specified pressure dis-
tributions, however, solutions have never, so far as is ti-~ been
sought in terms of the given pressures. Rather, the thickness has been
ass-d known and the resulting pressure distribution calculated. This
latter attack involves no questicm as to uniqueness and a one-to+ne
correspondence certainly exists. When pressure is prescribed first,
however, it Mcomes necessary to consider the possibility of nonunique–
ness. In twti~nslonal, low-speed flow a freedom of choice is tiown
to exist and leads to the introductim of purely circulatory flow which,
in turn, prbvides the m3chanism of lift. NO &?ldOgUe to this OCCUrS in
the lo~eed, two-dimnsional, nonlifting case when the body is smooth
and is assmmd to close. In the following developments a nmltiplicity
of solutions will, however, occur in the nmlifting case and bodies with
given pressure distrilxztionsretain a degree of freedom.

Equations (25) and (26 ), together with equation (21), suffice f cm
the solution of quasi< onical llfting problems while equations (32)
and (33 ), together with equation (30), apply to symmetrical wings. In
the applications to follow, the divisim into lifting and nonlifting
cases has been maintained. ‘lhe detailed treatmmt of equations (26) and
(33 ) CaU he ~ther simplified If the problems are separated into cases
involving s-try and antis= try about the x axis of the hpo8ed
boundary conditions. Suppose, first, that the given values of upwash
and pressure cwfficient in these eqyations are odd functions of T.
It follows from physical considerations that the leading or mmface
slope, respectively, will be an odd function of ~ and that conse-
quently the unknown coefficients ai or bi nnzstvanish for even
values of the subscript i. If the tiansfommtion t = –T is mde in
either equation (26b) or (Ssb), the pairs of equations (26a) and (26b)
or (Ssa) and (Ssb) yield consistent sets of simultaneouslinear eqyations
that can be obtained from single equalities. Hence, for Wu or

%
expressed in odd powers of q,

[K42]

I

or

——. . ..— —— —.. — — —.——— ———-
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()
Ic+lJ-c i ()80t(l’)-t)~ z)

x 1?=+= fix
where the notation [K\=] in the mummtion denotes
contained In K~2.

the
are

h the sam fashion, a simplificationcan be
boundary conditions. Again uslug the bracket

(35)

the largest integer

achieved for synmBtii-
notation to indicate

largest- intiger, the re~ting e~uations becou, when Wu. or Cp
expresmd in even puwers of q,

‘(’T)’2]%,fJ2J

.Or

dt (36)

(37)

Wings With Load Distributions

rewed trl~ mlar wing.- Equations (2I-) and (25) lead directly
to the determination of angle+f-ttack laading on a yawed triangular
wing. This solution is well tiown and was calculated in reference 7 by
a nmthcd which was a particular case of the present theory.

The boundary conditions are that Wu = – VocL on the plan form,
. hence ~ = O and, from equation (21),

4 bo+ble—=
q

&04(H1)

.

(38)

.

—. .
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.

Equations (25) lead to tlm equalities

B
f

~ona bo+blt
—. dt_a=ll

t at J(t-eo)(t@l)

-$
f

l~a
—cL=—

bo+blt
dt

4, –~ t x J(Oo-t )(e~-t)

After integrationby parts, these relations becona

f

P ‘o (bo+blt) dt
u=--

41 t2 J(l-t2 )(t-eo)(t+l~)

f
a=f “ (bo+blt) dt

-1 t2d (1-t2)(emt )(el-t)

Hence,
.

,

.

..i!
[

bo L~(eo, el) + bl Ll(eo, el)
4 1

where

f

e.
Lo(eo,el)= – dt

1 ta J(1- )(t-co)(tAl)

[

60
Ll(eo,el)= – dt

t J(l–t= )(t-eo)(-WI)

(391

It is apparent that equations (39) can be solved for b. and bl
in terms of the functions Lo(eo, 91) and Ll(eo, f31). Substitution of
the values into equation (38) leads to the expression for load coeffi–

. cient

.--. — . .. —-. —— -——— —, ~.— —— — —.. .— —-
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where E is the cmnpleti elliptic integral.of the seccmd kind with
m.0dtiu8~ ~a

l-eoel – J(l-e# )(1412 ) . [J(l-o)(l+%) - J(l-l)(l+eo) 12(,1)G=
e@l 2(eo-el)

In the particular case when 91 = 4., the value
and the resultant loading oq the unyawed wing becoms

4 ~ fJo2

—=

~ lm~

of G beco~s f30

where the modulus of E is /1-002. This latter problem could, of
course, have been solved directly from equation (36) in a nmch simpler
fashion.

The rolling triangular wing.– Consider next the case of an unyawed
triangular wing rolling about its axis of s-try. If the angular rate
of roll is P
are that Wu =
loading on the

radians ‘persecond, the Imundsry
– Py. In this case K = 1 and,
wing is given by the expression

conditions on the ting
from’equation (21), the

.

(k’) “

where the coefficients lo and b can be deleted since the leading
must obviously be ant isy&etrical .– Since {tc\2]is equal to zero in -
equation (34), bl is found to satisfy the relations

. .

(43a)

0=-bl
f ()‘0= 32
1 %&

Perfarming one differentiation with respect to
two integrals, and tkn integrat~ by parts, leads
sions

dt (43b )

t, in each of the
one to the expres-

.

P

!

pb=eoz ‘o d% _ ~i=eo a 190
f

dt

t2 J(l–t2 )(&-eo2 )
—=
To 41 t2 Jw (t%oz ) ‘/2 4&ol

.
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.

f

e.

o = b~eo=

1

t d-t a ‘o=bleo— J’ t dt

= (t=--go=)S/’ ae01 ‘ J(l–t’)(t=40=)

The last equation reduces to an identity while the f-r one becoEBs
/.

where the modulus of the comple~ elliptic integrals E and K is
k .= ~. IYOIUequations (@) and (44) the lffldingiS

4_ 4P *02 x e—-

q
P?o

(

2-902 ~

l-co=
-~K)m

(45)

and is In agreement with the results of reference 2.

The pitch* trim War wing. - If an unyawed triangular wing iS
pitching about its vertex, the boundary conditions bec~ Wu

=+where Q is the rate of pitch in radians per second. l?romequa–
tions (21) and (36), the leading and the relation involving the undete~
mined constants are

4 x bo-l-ll=e=—= ——
q $-

+Q-~
f ()‘o (~-t) ~ ~ 2b&j2+

V. 4 ~“ t % ~dt

since K = 1 and the loading must be s-tried about the x axis.
Equating c~fficients of ~ in the latter equation, one has

f

‘o ~. h 2 b@.#o =

()z &#t
(46a)

S=;;*O &J*.t
PO (k6b)

o
.

..._ . . ..— ._ -..—— ———. ..— ——.-
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or, after carrying out one differentiation and integrating by parts,

00
0 = h &feo t d-t

- (b&2b#02 ) ~
J’

dt

01 %&-+ )(+-.2) &~ ~ t J(l-t2 )(@-eoz )

Q a=—eo =+- J t4 at

be
+

To o 00 J(=+ ) (%902)

(lo+2b#02 ) $11
9 at

o 00 J(l–i%)(t%o= )

The first term in the first eqyatian is zero and, after integration of
the terms in the second equation, the following relations are obtained

o = bo+ 2602 k

~l#Q
= be(=) + (lWlo2K)&

To

Where the Inoaulus of the complete elli~tic integrals is k = J1402 .

The solutions of these simultaneous equfitions are

+8 t902~Q
b. = ,b=

& ~Q
(47)

V. [ @02K+(l<eo2 )E ] [ 1902K+(1+(302)E ] V.

and the reS’d.tantlaading on the w@ iS

4 4x Q 2 60= – e=—=

(2

= + 14e& E (48)
~ Vop Jep ~ —

l-eoz ~402
)

Differentially deflected triangular wing.– If the two sides of an
u.nyawedti~ wing are deflected differentially,vertical induced
velocity on the * is

Wu _y
—=—
To IYla



.
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and lcedtig mst therefare be as-trical. It follows that K = O
and, from equations (21) and (34),

and

An integration by parts, in the latter expression, reduces the integral
to a standard form. A further integrati(m leads to the equality

and load distribution is therefwe

(49)

Trian@ar wingwith parabolic twist.- Consider, finally, an
unyawed triangukr wing twisted ~ymmtrically
induced velocity is of the form

where r is a fixed constant. Since tc = 2,

such t~t its &tical

the relations

and

apply. Detailed analysis will be amitted in this case since it follows
the sam pattezm of developmmt used in the earlier cases. Three.simul-
taneous equatluns involving the two u?dsnowns b. and ~ are obtained,

—...- .—— . —. .— —-— .— —..
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but the equation relatm cmfffcfent.s Of TI can be sho~
identically and the two remaining equations yield a unique
expression for l-d distribution is

NACA TN 2497

to vanish
answer.

()4 & 52e4 [2802K–(l+r302)El+[-(3-eo2)K+4(2-eo2)El#
—=— (50)
~ $P” [-5eo%%eo2 (1+602)KE+W3044930=+4)E=] ~

+
w ere the mcdulus of the.ocmpleteelliptic integrals K and E is
l-c. ●

Mings With ~iCkn9SS Distributions

!iMaIlgulm?wing with uniform pressure.– In reference IJ-,Squire
considered certiin thichess distributions for syumBtrical nonlifting
X fi conical flow fields and calculated the resultant pressure dis-
tribution. The first of Squirets examples was a triangular plan form
with a uniform pressure distribution. It is instructive to consider the
inverse of this problem and to seek the wing assuming the pressure
variation known. The plan form is symmetricallydisposed with respect
to the x axis or stream direction while the boundary conditions
require that Cp fs a constant over the entire ti”g. In this case,
R = O and from equations (30) and (37) the following relations hold

l’he VdX9 of a. may be found inamnner
used in the previous examples. Thus, after the
formed, equation (52) becorms

$%

f

e.

—.*O

2 1

t2 dt

.,

(51)

(52)

quite similar to the one
differentiation is per-

peo t2 dt

e. &o Jl J(l–t’ )(t%o’ )
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After titegration,this yields

29

Pcp % a ~ . ao(K~)—=— — (53)
2 60 &o 1+02

Jlq. H ao ‘8where the mdulus of the elliptic integrals is
el*ted tiom equations (51) and (53), the slope of the wing on the
upper surface is

The ordinate of the upper surface results

%.1

f!rcmthe integration

ax

and is

Triangular wing with linear presm.lregradient.– It is now proposed
to aebrmine the thiCknees distribution for an unyawed tr~ tig
for which pressure varies linearly in the streamwise direction. E%t-
ting Cp e@al to bx, it follows from equation (30) that the slope of
the uppr surface is expressible as

since the solution is obviously synmtrioal about the stream axis.
Sfnce R = 1, equation (37) becom3s

‘b‘M’””’%(:ja%i$””
Equation (%) is an identity and, after the ccafficients of ~ sre
equatad, leads to the two relatims

. ..

(55)

(56)

—...- . . . . . —.. ..__ __— —_ ——. _ __ —— .——.———._ ..-



30 NACA TN 2497

dt

It is of interest to compme the series of equations
de~eloped with the correqmnding eqpations in the ~oblem

(m)

just
of the pitch-

* tr-imgular wing. Fcmmally, the slgebraic steps are the sam &d it
is to b emected that, just as in the case of equations (46), two ,
simultane~ equations-~ be obtdned and that their solutions will
provide the constants a and z. In the present case, however, equa–
tion (ma) can k shuwn ?O vanish identically and as a result only one
equation in two unknowns remains. This Mans that an infinite numlmr of
Tossitle solutions exists. The following calculationswill supply the
necessary aetdls to confirm these renarks.

Consider equation (ma ) ~a titmaiuce the transformation

t==T, eo2. To (%)

Then, by mmns of the rektions

a 2

(

a2 a
—= 2@, —’
at $22’ P+z )

the equation beccnms

f

‘o ~T
o ( az+a

*ThT2 h )‘% — ‘— —
.G A+

az ‘O
2T0 —

J

T dT a
–J’

‘o dT

aroz 4@-T)(T-TO) –‘0 hTo ~ ~ (1-T) ( T–To )
1 1

(59)

-’

.
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Each of the above integrals can be evaluated dtiectly and the bracketed
terms are in both cases zero. Since bimiler integrals occur in problems
of this type, however, it is worthwhti to give.the following @neral
formulas (n an inte~r )

f

‘o TndT n= 0.3 = – ~(lflo), n=l;
1 J(1-T) (=To) = ‘Z’

2%*1 L (n~ )!n! ‘ “

n-1

x

2(2J-l)!(2n+&l)!

~ ~ (*3)! 3J(3-l)!(-3-l)!
=

and

.

1Ton-j , n>~’ (6ckL)

J’”’nE“=%’ ‘=O; ‘iw ‘2To-~)5“;

3t(To-1)r (2n-l):Ton+ (=+1)!= 4

~(n+l) L (n-l)!n! 2 n! n!

‘0 n-j1,n>l (60b)

. It remains to calculate the terms in equation (57b ). If the dif-
ferential relations in equation (59) are used, the desired expression is

+3211_ a. ( a= ah+
2F2Dl+-

2 0 aTo )

(61)

o

—— —. .—— —
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●

where

JJ
TO l= aT

D1 =
1 T(l–T)(T-TO)

f

To

&=
T ~T

1 &(l-T) ( T-T~

f

To ~ &T
D9 =

1 A/T(l-T)(T-TO)

J’
K

2 4 (l+T02~=— &4 UdU=; To%-~

0

=4? r (inSudu 3.- To& + j (l+To) DI

o 5

and the mcxlulusof the elliytic integrals E and K is dl-’l& t

Direct calculation gives for the coeffictint of a. the expressim

E (3+. ) – 2K

(1–TO)2

and for the coefficient of a2

2TOE– TO K- T02K

(1-TO)2

!i%evalue of b from equation (61) thus establishes for pressure
cmfficient the value

2x
CP=2 {[

a. 12K-E(3-02) +
p (1402)2

[ 1}a2 (eo4+e02 ) K – 2802 E ,

where the modulus of the elli@ic integrals is &/l-eo%

m m

(62)

of the wing

.

.

.
(63)
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In reference 11, Sqdre considered the thiclmess diswbution that is
obtained by neglecting the arc hyperbolic function b equatian (63).
His results correspond to the
j3pecifi@ly

%’ =

Cp = ‘w [(34.2) K – (Qeo~) E] ‘ (6kb)
p=(l-oa )2

If the w5ng is cut narmal to the db
stream direction to form a trailing / Y

edge, a triangular plan form and an / .

elliptical cross~ection result as /
/

shown in the accmpanying sketch= /
E the root chord of the wing is /

co ti tk milmml thiclalessat the ,‘
trailing edge is t, the constant /
a. in equation (64a) is eqti to
J321not/c# and tb analytical

\

expressicms fur the upper surface
the * and pressure cwfficient
are

Of

(6>) f

[

t
Jnotx ~

CP = 1<(3-0.2 )K~w902)E Y
C02(1-%2)2 v

(6n)

It is apparent that a multiplicity of thiclmess distributicms with
the _ pressure distributions must exist. Consider first the case
when a. in eqyations (62) and (63) is zero. !lb surface cmdinata and
pressure c~fficient me, respectively,

.

(66a)

----- .-. _— ..-. . —— —-———-— .— .—
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B

(66b) , ,

The lateralsection of such a wing is shown for particular values of
~ and f3 in the neti sketch (the curve denoted by n = CU). A1.mg the
root chord the thiclmess is zero while the ncaximm thickness position
occurs at the value of ~/y satisfying equatian

= UC cosh ~
Y

or at approximately

W/y = 1.3u8 or y/&X = o.76~7
.
l’hepressure coefficients of equatione (651Y) end (66b ) are ident-

ical provided the eqlality “

a2_—-

&’

holds. l?romequations

mot [(3402 ) K - (&~02@ 1
2e02C02 [(14+?02)K -m]

(65a) and (66a) it fouowe that the surfaces

(67EL)

2 [(3+02) K - (ue02D3 UC cosh ~

‘()

Y—=—
[(l+eo2)K - ml

(67b)
t %Co Y

have precisely the s-am Wessum dislmibution as dms also any surfaoe
given by the relation

2Z 2Z1 + 21LZ2—=
t t (l+n)

where n is an arbitrary multiplicative factor.

.

———

(67c)

.

...—



NACA TN 2497

Cross EeCtiOnE h the X = co p- Of s~facee given by
eqyations (67a) and (67b) are shown in the acc~ &tch for

2Z

T
1 :ZLW

-- ‘“- ~.

\
.—w Y--. .— - --—- ---

X= C*, M*

+—
A Section BB

Cp

x

35

Section AA

% =E andx~ =1/2. Also included are sections calculated fram
equation (67c)for n = 1 and n = 1/5. .

Since bcdies with the - pressure distritmticrncan be found, the
possibility of combining results and @ttlng a bdy inducing no than

rin the.free-stream pressure should le investigated. Eram,equation ( 2),
it follows that for Cp = O, the arbitrary constants a. and a2 nnzst
satisfy the relation

az = - E (3402)—=-
a. 1902[(1++?02) K – m]

and, fbom equation (63), the ordinate of the resulting surface is
expressible in the form

%$’=(79J’EF-’.%?’%?
where

— .———.._______ ___ —————. ———
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P2 = (3-02) K – (@Go2 ) E

The surface produces a real * only
condition leads to the inequality

(m@/Y) &x/Y)2 -1

if ~ remains positive

/ arC cosh ~X/y ~ P=

The ran.@ of m#/y is fim 1 to CD and it is eaby to show

and this

that the
left member has the lower limit 1 at ~/y equal to 1. On the
other hand, P~ can be written in the form

P2
P= =

P#2(l-eo2 )(K – E)

and, since K – E> O for 9.<1, it appears likely that P~ is
grea~r than one. A more detiiled check shows, in fact, that Pa lies
between 3 and 9 fhm which it follows that the inequality can never
be satisfied in the neighborhood of the leading ed~ and no real wing
with zero pressure c~fficient is possible. The variation of Pl, P2,
and PS is shown in the accompanying sketch in which the variables are
plotted as functians of 1302.

9612

74.8

52$

300
0 .2 .4 p= .6 .8 Lo

.

1

-- ———. .2 —._ . . . . —— ___
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comIJ.JDm REMARKS

37

It has been shown that the assumption of
supersonic field transfams the basic partial

cpasi+onical flow in a
differential equation for

th~ perturbation qotential to an ellip;ic-type equation in * inde-
pendent variables throughout the region inside the ltach cone.’ It is
therefore not surprising that solutions of wing problems, for both the
lifting and. the nonlifting case, lead directly to the consideration of
an integral. equation (equatiun (18)) of the type encountered in two-
dimnsi~ SUbSOIliC theory. In the analysis and the applicaticms of
this repart, it is shown that-for a large class of ~cified conditions
the lmown inversion of the integral equation produces solutions that
requtie straightf~d integrations and the solving of shultaneous
linear equations.

An unusual feature of the resulting theory is the fact that a
multiplicity of f301utiansmy appear in a given problem. In retrospect,
this d&gree of freedm is not surprising since it is well known that a
nuIl solution exists in ~nsional subsonic theory and appears in
lifting problems in the form of a purely circulatory flow. In the study
of subsonic sym@%rical profiles, this arbitrariness in the solution
occurs wlpn the gecmtry of the wing is to be deterndned f%um the dis-
tribution of presame enr%d by the fluid. since, however, closure of .
the wing is necessary, an additimml conditim is given which esta&
lishes lllliqUeIleSSin nnzchthe _ mnner that the Kirttacondition
@oses uniqueness in the lifting case. In the consideration of super-
sonic quasi< onical flow, similar conditions to determine uniqueness do
not necessarily arise. Mathmmtically, the condition of uniqueness is
determined from the degree of dependence between simultanecnm lbar
eq~tions.

Onefurther remark concertig tlm analogy between lifting and non-
Iifting problems appears to be pertinent. In two-dtmnsional subsonic
theory the integml relation between the perturbation velocities along
the wing surface may be written, in the lifting case, as

W(x,o) = : JcU(xllo)axl

o x—xl

where c is chord length. In th8 symmtiical case, the interrelation
is expressed in the form

f

c
U(x,o) = $

W(xl,o)dxl

o x—xl
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Thus, aside frm the factor ~, a complete duality exists in the formal
~themat ical analysis of the two problems. Hence, the circulatory motion
associated with a flat plate at zero augle of attack (see sketch) is

I
I

/1
_ ‘LJ,u

,/ /w-/
/- x/

/’
I

A . .

Lifting case Thickness case

analogous to a slcqE distribution associated with zero pressure cmff i-
cient. Huwever, in three-dimensional supersonic wing theory the lasic
relations” between w and u on the wing do not have the property of
a~ity (see equations (10) E@ (27)). 5 assumptim of quasi-conical
flow, however, together with the restriction to triangulcm-type plan
forms with subsonic leading edges, brings the study of lift and thick–
ness into more general.yerallelism and a close similarity exists
between the final expressions in

Am3s Aeronautical Laboratory
National Adviscmy Committae

Moffett Field, Calif.,

eqlatiokls (25) and (32)0

fcr Aeronautics
July 10, 1951
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APPImDrx

THE GENERALIZED PRR?CIPAL2AKI AND FmPAKcoF AN INTEGRAL

If the singular integrand of a conver~nt improper Integral is dif-
ferentiated formally, without due regard for the singularity, the resulti-
ng expression is, in general, improper. In applied theory, however,
the differentiation is usually to be performd upon the integral itself
and in this case a careful treatmnt of the entire expression leads to
a finite answer. 5 two most common examples of such problems arise
in the evaluation of the Cauchy prfncipal part and HadamarIi?s finite
psrt. The foll.owingdevelopment indica%s the manner in which these
cases are exhiled to include miltiple differentiations. (The gener-
alized principal part shall he concerned with titegrands having singu-
larities within the region of integration and of order n where n is
a positive integer; the finite part, on the other hand, involves inte–
grauds with singularities at an end point of the region of integration
and of order n + 1/2. )

Consider fir~t the evaluation of Cauchy’s principal.part. In this
case a single differentiation is used and the expression

II
g(x) .1

f&a
A(xl) Zn IX–X1l dxl, a<x<b

lecomes, far constants a and b,

f

h A(xl)dxl
g(x) =

a x-xl

(Al)

(AZ?)

Here the symbol on the integral sign indicates that g(x) is to 30

evaluated by a limiting process defined as follows

[f

‘- A (Xl)
g(x) = ~l:o —aXl+

,J’

b A& ~1 1 (A3)
a x—xl X+6 x—xl

To assure the conver~nce of this integral it is sufficient but not
necessary to assure that A(x) is differentiable at the point xl = x
and that elsewhere within the region of inte~ation ,A(xl) is either
continuous or possesses integrable singularities. The concept of the
Cauchy principal.part is so well known that the symibolon the integral
Is often omitted, as shall be done here.

.— - .— ___ ___
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#

Turning next to the ease of multiple differentiations, consider the
expressions

II
a

J’
ax=

1s— —=
ax xl—x –

a { b:%= f’a’a”” “4)a

where the limits of integration are independent of x and.the symbols
the two latter integrals indicate that the generalized principal part
to be calculated. From the definition of I in the first integral,
follows that

I a=–Zn~=-
ax x-a (=x) (x-a)

(’5)

The simple definition given by equation (A4) can be generalized to
include integrals of the type

2
b

f

b

1%% a
A(xl) Zn IX–X=l h= = $

J

A(xl) dx=

a xl-x
\

{

b
A(xl) dx== (A6) ,

a (X=–X)2

Equation (A6) defines
possible, however, to
in the final integml

the symbol appearing in the final meniber. It is
relate this integration to the particular integrand
of equation (A4) by writing 12 in the fomn

b

Iz=~
L[

A(xl) - A(x)

[b 1ax=dxl+A(x) —
ax. a xl-x xl-x

Then if A(x=) is integrable and if, at x= = x, its derivative exists
and is single valued, the expression for 12 becomes

b

f

b

12 =
A(x=) – A(x)

&c= +’(x)
f

dx~

a (X1-X)2 a (X=-X)2

1

f

A(xl) –A(x) ~1 _ A(x) (b-a)=

a (x,-x)2 (b+’) (x-a)
(’7)

where the results of equation (A5) have been used.

. — .
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The first integral in equation (A7) is now in a form that involves
no extension beyond the concept of Cauchy’s principal PU% and the
evaluation of 12 MY be carried out with that form.
can be shown from equation (A7) that if the indefinite
A(xl)/(xl–x)2 exists such that

Furthermore, it
integral of

J A(x1)dx=— = G(xl,x) + C
(X1–X)2

(A8)

then the value of 12 oan be found by following the conventional rules
for substitution of limits so that

b

1’ A(x1)dx=
= G(b,x) – G(a,x)

a (x,–x)2
(A9)

The extension to higher ordered derivatives is obviouE. Thus, for
a and b independent of x, one has

n+z b
a

f

b
I anA(xI) h lx–x=] ax= = —

f

A(xl)&z=
n+l=— —

h
n+l

a axn a (x,–x)

= n:
i

b A(x=)ti=
(Ale)

a (X1-X)‘+’

Equation (AIO) defines the final -er appearing in it. The qutity
In+l can also be written in the form

b

H
b

I n! A(x~) - B(%xl) ~= +
f

B(x,x= )ax=
n+l =

(X.-x)n+= 1 (All)
a a (X=-X)n+l

where

+1) (X) (xl x)-=
B(x,x=) = A(x) t *(X=–X) +...+

(El)! -

i

-b b
ti~ 1

(J f
aitil 1

[
1 i–l’

—=- -—
1

+ (–1) “+’ ,i: n
a (X,-x)i+= = z a xl—x i (b-x)i (x+)

.—.- - --—-.—...- —..—..—. ———— ——. — ——. .—. . .



.
42 NACA TN 2497

The first n derivatives of A(x=) are assumed to exist and be single
valued at xl =x while elsewhere in the range of integration A(x) .
- Wssess integrable singularities. The generalization of equation (A9)
holds SO that if

J’A(xl) dxl
=G(xl,x) + C

(x=–x)=’

then

b

f
A(xz) d% =G(b,X) -

G(a,x)

a (X=–X)n+L

(A12)

(A13)

It is also ~ssible to extend the definition of equation (A1O) to
include a functional dependency on x in the numerator of the integrands.
Thus, replaoi~ A(xl) by A(x,xl), equation (AIO) again defines unique~
a principal p.rt integml provided tinefirst n derivatives of A(x,xl)
with respect to x and xl exist at xl = x.

●

The original conoept of the finite wrt was used byHadamard in— —
connection with square root singularities. Consider the expre~sions

b

From the first integml in this relation it

+’
b

~1 . . -2

a (&X=)=” ~

follows that

(A15)

The natural ertension of this idea is to consider

where A(x1) is continuous at xl
the range of integration.

‘lb evaluation of J’ can be
of equation (A1.4) after rewriting

= b and is integrable elsewhere in

related more closely to the integral
J2 in the form

— ..— — —-—
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J’ A(x=) -

a“ ~
J

*IA(b) ~1 + A(b). —

b-xl a ‘r &xl

(A17)

m fOllows that

Jb A(xl)dxl =

J

b A(xl) -A(b) ~= + A(b)
f

b
axl (m8)

a (b-xl)3’2 a (t+xl)g” “ a (b-x2)3’2

An interesttig integraticm technique can be evolved from equation
(KL8) , *tting - .

and setthg the indefinite integral.of

J

A(xl)til

(b-x,)3/2

equal to F(b,xl) + C, it folluws that

J
b
A(xl)dxl = –[F(b,a) + C]

a (b-xl)””

where

c
[

24(b)=
xi~b ~ -

T(b,xl)
1

Thus, with the proper choice of the constant of integration, the defi-
nite-integral is f&nd by substituting conventiondl~ the
In practice, C is often zero.

DefinX Jn+l in the form

b
n 1.3... (~l)

= (-1) ~
J

A(x1 )dxl

a (b+XI)n+”2

ltir limit.

&cl

(Alg)

—. — .— —.———.. — —-. ..—
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.

it follows that

.

f

b A(xl)dxl .

J’

b A(xl) –B(h,Xl) ~=+

f

b B(b,xl)dxl
(A20)

a (bX.)”* a (b-x.)”% a (=x.)”%a

where

(_l )“++-) (b
B(b,xl) = A(b) –At(b)(&xl) + ... + ) (&xl)n–l

(*1)! .,

dxl ‘= (-l)i,i (:_ J’(:ax*=_2+

(b-x.)i+* s 1.3...(21)l) 2f–1 (b-a)

*

It is furthermore possible to extend the definition of equation
(A19) to inolude a functional dependence on b of the Integrand A(XI). .
I&placing A(xl) by A(b,xl), equation (A19) again defines uniquely a
finite part integral provided that

.

.
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